Deformation and Tectonics: Contribution of GPS Measurements to Plate Tectonics – Overview and Recent Developments

The use of space-geodetic techniques to study geodynamic processes began with Very Long Baseline Interferometry (VLBI) in the early 1970s. By measuring the delay in arrival time of the signal from distant celestial objects, the distances between stations that are hundreds of kilometres apart can be derived with millimetre accuracy. A review of the first 20 years of this technique is given by Ryan and Ma (1998). Around the world there are nowadays more than 100 VLBI stations. Another technique that has been available since the early 1970s is Satellite Laser Ranging (SLR). As the name implies, this technique determines the distance to a satellite by measuring the round trip time of a light pulse that is sent to the satellite (Degnan 1993). Today, there are about 60 SLR stations operational around the world.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 160.49 Price includes VAT (France)
Softcover Book EUR 210.99 Price includes VAT (France)
Hardcover Book EUR 210.99 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others

The contemporary GPS-derived horizontal motions of the main elements of tectonic structure in the Ossetian segment of Greater Caucasus
Article 14 July 2015

Geodynamics
Chapter © 2017

Monitoring Site Stability at the Space Geodesy Facility, Herstmonceux, UK
Chapter © 2013
References
- Agnew, D.C. (1992) The time-domain behavior of power-law noises. Geophys. Res. Lett., 19, 333–336 ArticleGoogle Scholar
- Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B. and Boucher, C. (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res., 112(B09401), doi: 10.1029/2007JB004949 Google Scholar
- Altamimi Z., Sillard, P. and Boucher, C. (2002) ITRF2000, a new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res., 107(B10), 2214, doi: 10.1029/2001JB000561 ArticleGoogle Scholar
- Bastos, L., Bos, M.S. and Fernandes, R.M.S. (2006) Investigation of common modes in the Iberian GPS network. Presented at the XIII Assembly of Wegener, Nice, 4–7 September 2006 Google Scholar
- Bastos, L., Bos, M.S., Fernandes, R.M.S. and Combrink, A. (2005) Impact of GPS time series errors in the estimation of tectonic plate models. Presented at the Joint Assembly of International Associations IAG, IAPSO and IABO, Dynamic Planet 2005, Cairns, 22–26 August 2005 Google Scholar
- Bastos, L., Osório, J., Barbeito, A. and Hein, G. (1998) Results from geodetic measurements in the western part of the African-Eurasian plate boundary. Tectonophysics, 294, 261–269 ArticleGoogle Scholar
- Bastos, L., Osório, J., Landau, H. and Hein, G. (1991) The Azores GPS Network, Arquipélago. Life Earth Sci., 9, 1–9 Google Scholar
- Beavan, J. (2005) Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from US deep drilled braced monuments. J. Geophys. Res. 110(B8), CiteID B08410 Google Scholar
- Beran, J. (1994) “Statistics for Long-Memory Processes”, Monographs on Statistics and Applied Probability, ISBN 0-412-04901-5 Google Scholar
- Beutler, G. (1996) The international GPS service for geodynamics: the story. Proceedings of the IAG Symposium, Vol. 115. Springer, Berlin, pp. 3–13 Google Scholar
- Bird, P. (2003) An updated digital model of plate boundaries. Geochem. Geophys. Geosyst., 4(3), 1027, doi: 10.1029/2001GC000252 ArticleGoogle Scholar
- Blewitt, G. (1993) Advances in Global Positioning System technology for geodynamics investigations: 1978–1992. In: Smith, D.E. and Turcotte, D.L. (eds.) Contributions of Space Geodesy to Geodynamics: Technolog, Geodyn. Ser., Vol. 25. Am. Geophys. Union. Washington, 195–213, 213 pp ChapterGoogle Scholar
- Blewitt, G. and Lavallée, D. (2002) Effect of annual signals on geodetic velocity. J. Geophys. Res., 107(B7), 2145, doi: 1.1029/2001JB000570 ArticleGoogle Scholar
- Bock, Y., Agnew, D.C., Fang, P., Genrich, J.F., Hager, B.H., et al. (1993) Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements. Nature, 361(6410), 337–340 ArticleGoogle Scholar
- Bos, M.S., Fernandes, R.M.S., Williams, S.D.P. and Bastos, L. (2007) Fast error analysis of continuous GPS observations. J. Geod., doi: 10.1007/s00190-007-0165-x, online first Google Scholar
- Bruyninx, C. (2000) Status and prospects of the permanent EUREF network. In: Gubler, E., et al. (eds) Proceedings of the Symposium of the IAG Subcommission for Europe, Vol. 8. EUREF Publication, Prague, June 2000, pp. 42–46 Google Scholar
- Camp, M. van, Williams, S.D.P. and Francis, O. (2005) Uncertainty of absolute gravity measurements. J. Geophys. Res., 110, B05406, doi: 10.1029/2004JB003497 ArticleGoogle Scholar
- Chase, C. (1978) Plate kinematics: the Americas, East Africa, and the rest of the world. Earth Planet Sci. Lett., 37, 355–368 ArticleGoogle Scholar
- Chavet, X, Valette, J.-J. and Feissel-Vernier, M. (2003) Analysis of geocenter time series derived form SLR, GPS and DORIS. AGU Fall Meeting, San Francisco, 8–12 December 2003 Google Scholar
- Degnan, J.J (1993) Millimeter accuracy satellite laser ranging: a review. In: Smith, D.E. and Turcotte, D.L. (eds.) AGU Monograph Geodynamics Series 25, Contributions of Space Geodesy to Geodynamics Technology, Washington, 133–162 Google Scholar
- DeMets, C., Gordon, R.G., Argus, D.F. and Stein, S. (1990) Current plate motions. Geophys. J. Int., 101, 425–478 Google Scholar
- DeMets, C., Gordon, R.G., Argus, D.F. and Stein, S. (1994) Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions. Geophys. Res. Lett., 21(20), 2191 ArticleGoogle Scholar
- Dong, D. and Bock, Y. (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J. Geophys. Res., 94, 3949–3966 ArticleGoogle Scholar
- EPNCB (2008) EUREF Permanent GPS Network – Data & Products – Products, retrieved January 15, 2008, http://epncb.oma.be/dataproducts/products/index.html
- Feigl, K.L., Agnew, D.C., Bock, Y., Dong, D., Donnellan, A., et al. (1993) Space geodetic measurement of crustal deformation in central and southern California, 1984–1992. J. Geophys. Res., 98(B12), 1677–1712 ArticleGoogle Scholar
- Feissel-Vernier M, Le Bail, K., Berio, P., Coulot, D., Ramillien, G. and Valette, J.-J. (2006) Geocenter motion measured with DORIS and SLR, and geophysical evidence. J. Geodesy, 80(8–11) Google Scholar
- Fernandes, R.M.S. (2004) Present-Day Kinematics at the Azores-Gibraltar Plate Boundary as Derived from GPS Observations. DUP, Delft, ISBN 90-407-2557-8 Google Scholar
- Fernandes, R.M.S., Ambrosius, B.A.C., Noomen, R., Bastos, L., Wortel, M.J.R., Spakman, W. and Govers, R. (2003) The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data. Geophys. Res. Lett., 30(16), 1828, doi: 10.1029/2003GL017089 ArticleGoogle Scholar
- Fernandes, R.M.S., Bastos, L., Ambrosius, B.A.C., Noomen, R., Matheussen, S. and Baptista, P. (2004) Recent geodetic results in the Azores Triple Junction region. Pure Appl. Geophys., 161(3), 683–699, doi: 10.1007/s00024–003–2469–y ArticleGoogle Scholar
- Fernandes, R.M.S., Bastos, L., Miranda, J.M., Lourenço, N., Ambrosius, B.A.C., Noomen, R. and Simons, W. (2006) Defining the Plate Boundaries in the Azores Region. J. Volcanol. Geothermal Res., 156, 1–9, doi: 10.1016/j.jvolgeores.2006.03.0192006 ArticleGoogle Scholar
- Fernandes, R.M.S., Miranda, J.M., Catalão, J., Luis, J.F., Bastos, L. and Ambrosius, B.A.C. (2002) Coseismic displacements of the MW = 6.1, July 9, 1998, Faial earthquake (Azores, North Atlantic). Geophys. Res. Lett., 29(16), 1774, doi: 10.1029/2001GL014415 ArticleGoogle Scholar
- Gross, R., Fukumori, I. and Menemenlis, D. (2003) Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J. Geophys. Res., 108, 2370, doi: 10.1029/2002JB002143 ArticleGoogle Scholar
- Herring, T.A. (1999) Geodetic applications of GPS. Proc. IEEE, 87, 92–110 ArticleGoogle Scholar
- Hoffman-Wellenhof, B., Lichteneger, H. and Collins, J. (1997) Global Positioning System: Theory and Practice, 4th Ed. Springer, Berlin Google Scholar
- Johnson, H. and Agnew, D. (1995) Monument motion and measurements of crustal velocities. Geophys. Res. Lett., 22, 2905–2908 ArticleGoogle Scholar
- Kahle, H.-G., Müller, M.V., Geiger, A., Danuser, G., Müller, S., Veis, G., Billiris, H. and Paradissis, D. (1995) The strain field in northwestern Greece and the Ionian Islands: results inferred from GPS measurements. Tectonophysics, 249(1–2), 41–52 ArticleGoogle Scholar
- Kasdin, N.J. (1995) Discrete simulation of colored noise and stochastic processes and 1/f power law noise generation. Proc. IEEE, 3(5), 802–827 ArticleGoogle Scholar
- Kellogg, J.N. and Dixon, T.H. (1990) Central and South America GPS geodesy – CASA UNO. Geophys. Res. Lett., 17(3), 195–198 ArticleGoogle Scholar
- Kreemer, C., Lavallée, D.A., Blewitt, G. and Holt, W.E. (2006) On the stability of a geodetic no-net-rotation frame and its implication for the International Terrestrial Reference Frame. Geophys. Res. Lett., 33, L17306, doi: 10.1029/2006GL027058 ArticleGoogle Scholar
- Langbein, J. (2004) Noise in two-color electronic distance meter measurements revisited. J. Geophys, Res., 109(B4), CiteID B04406 Google Scholar
- Larsen, S. and Reilinger, R. (1992) Global Positioning System measurements of strain accumulation across the Imperial Valley, California: 1986–1989. J. Geophys. Res., 97(B4), 8865–8876 ArticleGoogle Scholar
- Larson, K.M., Freymueller, J.T. and Philipsen, S. (1997) Global plate velocities from the Global Positioning System. J. Geophys. Res., 102(B5), 9961–9982 ArticleGoogle Scholar
- Mao, A., Harrison, C.G.A. and Dixon, T.H. (1999) Noise in GPS coordinate time series. J. Geophys. Res., 104(B2), 2797–2816 ArticleGoogle Scholar
- McCarthy, D. and Petit, G. (eds) (2004) IERS Conventions (2003). IERS Tech. Note 32, Verl. des Bundesamts fur Kartogr. und Geod., Frankfurt am Main, 127 pp Google Scholar
- Minster, J.B. and Jordan, T.H. (1978) Present-day plate motions. J. Geophys. Res., 83(B11), 5331–5354 ArticleGoogle Scholar
- Miyazaki, S., Tsuji, H., Hatanaka, Y., Abe, Y., Yoshimura, A., Kamada, K., Kobayashi, K., Morishita, H. and Iimura, Y. (1996) Establishment of the nationwide GPS array (GRAPES) and its initial results on the crustal deformation of Japan. Bull. Geogr. Surv. Inst. (Jpn.), 42, 27–41 Google Scholar
- Navarro, A., Catalão, J., Miranda, J.M. and Fernandes, R.M.S. (2003) Estimation of the Terceira Island (Azores) main strain rates from GPS data. Earths, Planets Space, 55, 637–642 Google Scholar
- Noomen, R., et al. (1996) Crustal deformations in the Mediterranean area computed from SLR and GPS observations. J. Geodynamics, 21(1), 73–96 ArticleGoogle Scholar
- Norabuena, E., Leffler-Griffin, L., Mao, A., Dixon, T.H., Stein, S., Seth, Selwyn, S.I., Ocola, L. and Ellis, M. (1998) Space geodetic observations of Nazca–South America convergence across the Central Andes. Science, 279(5349), 358 ArticleGoogle Scholar
- Parkinson, B.W., Spilker J.J., Jr., Axelrad, P. and Enge, P. (eds) (1996) Global Positioning System: Theory and Applications. Vol. 2, American Institute of Aeronautics and Astronautics, Washington BookGoogle Scholar
- Penna N.T., King, M.A. and Stewart, M.P. (2007) GPS height time series: short-period origins of spurious long-period signals. J. Geophys. Res., 112(B2), B02402 ArticleGoogle Scholar
- Pollitz, F.F. (2003) Transient rheology of the uppermost mantle beneath the Mojave Desert, California, Earth Planet. Sci. Lett., 215(1–2), 89–104, doi: 10.1016/S0012-821X(03)00432-1 Google Scholar
- Ray, R.D., Eanes, R.J. and Lemoine, F.G. (2001) Constraints on energy dissipation in the earth’s body tide from satellite tracking and altimetry. Geophys. J. Inter., 144, 471–480 Google Scholar
- Reilinger, R.E., McClusky, S.C., Oral, M.B., King, R.W., Toksoz, M.N., Barka, A.A., Kinik, I., Lenk, O. and Sanli, I. (1997) Global Positioning System measurements of present-day crustal movements in the Arabia–Africa–Eurasia plate collision zone. J. Geophys. Res., 102(B5), 9983–9999 ArticleGoogle Scholar
- Ryan, J.W. and Ma, C. (1998) NASA-GSFC’s geodetic VLBI program: a twenty-year retrospective. Phys. Chem. Earth, 23(9–10), 1041–1052, doi: 10.1016/S0079-1946(98)00144-X ArticleGoogle Scholar
- Scherneck, H.G., Johansson, J.M., Koivula, H., van Dam, T. and Davis, J.L. (2003) Vertical crustal motion observed in the BIFROST project. J Geodyn., 35, 425–441 ArticleGoogle Scholar
- Segall, P. and Davis, J.L. (1997) GPS Applications for geodynamics and earthquake studies. Ann. Rev. Earth Planet. Sci., 25, 301–336, doi: 10.1146/annurev.earth.25.1.301 ArticleGoogle Scholar
- Sella, G.F., Dixon, T.H. and Mao, A (2002) REVEL: a model for recent plate velocities from space geodesy. J. Geophys. Res., 107(B4), 2081, doi: 10.1029/2000JB000033, 1–30 ArticleGoogle Scholar
- Shimada, S. and Bock, Y. (1992) Crustal deformation measurements in central Japan determined by a Global Positioning System fixed point network. J. Geophys. Res., 97, 12437–12455 ArticleGoogle Scholar
- Soudarin, L. and Grétaux, J.F. (2006) A model of present-day tectonic plate motions from 12 years of DORIS measurements. J. Geodesy., 80, 609–624, doi: 10.1007/s00190-006-0090-4 ArticleGoogle Scholar
- Stamps, S., Calais, E., Saria, E., Hartnady, C., Nocquet, J.M., Ebinger, C. and Fernandes, R.M.S. (2008) A Kinematic model for the east african rift. Geophys. Res. Lett., 35, L05304, doi: 10.1029/2007GL032781 ArticleGoogle Scholar
- Stewart, M.P., Penna, N.T. and Lichti, D.D. (2005) Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares. J. Geodesy, 79(8), 479–489, doi: 10.1007/s00190-005-0478-6 ArticleGoogle Scholar
- Straub, C. and Kahle, H.-G. (1995) Active crustal deformation in the Marmara Sea region, NW Anatolia, inferred from GPS measurements. Geophys. Res. Lett., 22, 2533–2536 ArticleGoogle Scholar
- Tsuji, H., Hatanaka, Y., Sagiya, T. and Hashimoto, M. (1995) Coseismic crustal deformation from the 1994 Hokkaido-Toho-Oki earthquake monitored by a nationwide continuous GPS array in Japan. Geophys. Res. Lett., 22(13), 1669–1672 ArticleGoogle Scholar
- Vermaat, E., Degnan, J.J., Dunn, P., Noomen, R. and Sinclair, A. (1998) Satellite laser ranging, status and impact for Wegener. J. Geodyn., 25, 195–212 ArticleGoogle Scholar
- Watson, C., Tregoning, P. and Coleman, R. (2006) The impact of solid Earth tide models on GPS time series analysis. Geophys. Res. Lett., 33(8), L08306, doi: 10.1029/2005GL025538 ArticleGoogle Scholar
- Wdowinski, S., Bock, Y., Zhang, J. and Fang, P. (1997) Southern California Permanent GPS geodetic array: spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J. Geophys. Res., 102, 18057–18070 ArticleGoogle Scholar
- Williams, S.D.P. (2003a) The effect of coloured noise on the uncertainties of rates from geodetic time series. J. Geodesy, 76(9–10), 483–494, doi: 10.1007/s00190-002-0283-4 ArticleGoogle Scholar
- Williams, S.D.P. (2003b) Offsets in Global Positioning System time series. J. Geophys. Res., 108(B6), ETG 12-1–12-13 Google Scholar
- Williams, S.D.P (2008) CATS: GPS coordinate time series analysis software. GPS Solutions, doi: 10.1007/s10291-007-0086-4, online first Google Scholar
- Williams S.D.P., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R.M., Prawirodirdjo, L., Miller, M. and Johnson, D.J. (2004) Error analysis of continuous GPS position time series. J. Geophys. Res., 109, B03412, doi: 10.1029/2003JB002741 ArticleGoogle Scholar
- Zerbini S., Richter, B., Negusini, M., Romagnoli, C., Simon, D., Domenichini, F. and Schwahn, W. (2001) Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth Planet. Sci. Lett., 192(3), 267–279 ArticleGoogle Scholar
- Zhang J., Bock, Y., Johnson, H., Fang, P., Williams, S.D.P., Genrich, J., Wdowinski, S. and Behr, J. (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J. Geophys. Res., 102(B8), 18035–18055 ArticleGoogle Scholar
Author information
Authors and Affiliations
- Observatório Astronómico, Faculdade de Ciências, Universidade do Porto, Alameda do Monte da Virgem, 4420-146, V. N. Gaia, Portugal Luisa Bastos
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal Machiel Bos
- Universidade da Beira Interior, Covilhã, Portugal Rui Manuel Fernandes
- Instituto Geofísico Infante D. Luíz Lisboa, Lisboa, Portugal Rui Manuel Fernandes
- Luisa Bastos